

The International Quaternary Map of Europe and Adjacent Areas (IQUAME 2500): an European project with numerous facets

under construction

Kristine Asch

Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)
CGMW Vicepresident, Subcommission Europe

IQUAME: new edition of the International Quaternary

Umbrella International Union of Quaternary Research (INQUA)

Commission of the Geological Map of the World (CGMW)

2011 Start at INQUA congress, Bern

Coordination Federal Institute for Geosciences and Natural Resources (BGR)

Cooperation with international experts and advisory board

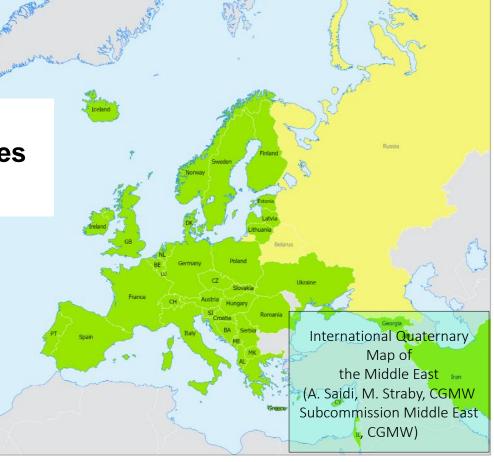
Continuation of the first edition on paper (14 sheets, BGR & UNESCO, 1967- 1995)

Based on the work of hundreds of mapping geologists in the last centuries

Built digitally as GIS to be available as web mapping application with selectable attributes

Aims:

- Compile and summarize the actual status quo of Quaternary mapping and linked research in Europe
- to renew the first edition on paper
- to work together in international cooperation across political borders
- to make these data usable and available for the Quaternary community, research, universities, planning authorities, exploration, the general public



IQUAME cooperation and participation

Recently joined to the community: Czech Republic, Slovak Republic, Luxembourg, Hungary and Romania

IQUAME 2500

participating countries

participating countries

National Geological Survey Organizations (contact points and contributing scientist

Abania: Albanian Geological Survey (gsa), Marku, S. Austria: Geological Survey of Austria (GBA), Retner, J. Belarus: The National Academy of Sciences of Belarus (NASB), Karabanov, A.

pemans, F., Heyvaert, V.
min and Herzegovina: Federal Geological Survey of
min and Herzegovina, Hrvatović, H.
atla: Groatian Geological Survey (HGI), Galović, L.
rvus: Cyprus Geological Survey (GSD), Zomeni, Z.

(SNM), Hournark-Nielsen, M. Denmark: Geological Survey of Denmark and Greenland (GEUS), Jakobsen, P., Leth, J.

Estonia: Geological Survey of Estonia (EGK), Kalm, V., Ploom, K. Faroe Islands: The Faroese Earth and Energy Directorate (Feed), Mortensen, L.

Finland: Geological Survey of Finland (GTK), Kotilainen, A., Palmu, J.

France Bureau de Recherches Geologiques et Minières (BRGM), Prognon, C, Tissoux, H. France: Commission for the geological Map of the World - Commission de la Carte Geologique du Monde (CGMW - CCGM), Cadel, J., Rossi, P. France: School and Observatory of Earth Science

Georgia Tolisi State University (TSU), Gobejishvili, R., Sadradze, N.Germany: Behörde f Stadtentwicklung und Umweit (BSU), Ehlers, J. Germany: Federal Institute for Geosciences and Natural Resources (BGR), Asch, K., Müler, A. Germany: Free University of Berlin (FU), Böse, M. Germany, Geol Denst, Landesamt für Umwelt (LIII), ktomer, E. Germany, Lower Saxony Institute for Historical Costall Research (19thK), Segschneider, M. Germany, Lower Saxony Institute for Historical Costall Research (19thK), Segschneider, M. Gerece-Helsen, Centre for Manne Research Gerece-Institute of Geology, 8 Mineral Exploration (3 M E.), Fediade, A. Tasglasa, D., Zananni, I. Iceland. Iceland GeoSurvey (50R), Hjartson, A. Iran Geological Survey of Iran (1951), Marzien, E. Harris, G. M. G. Geological Survey of Iran (1951), Marzien, E. Geological Survey of Iran (1951), Geological Survey of Montenergio Geological Survey of Montenergio Geological Survey of Montenergio Geological Survey of Montenergio (1904), Montenergio Geological Survey of Montenergio Montenergio Livecci University (UU), Cohen, K.

Heartestand Company of the Company o

Cooperation:

CGMW Subcommission Middle East (A. Saidi, M. Straby)

EMODnet Geology (H. Vallius et.al.)

Scientific advisors and exoerts:

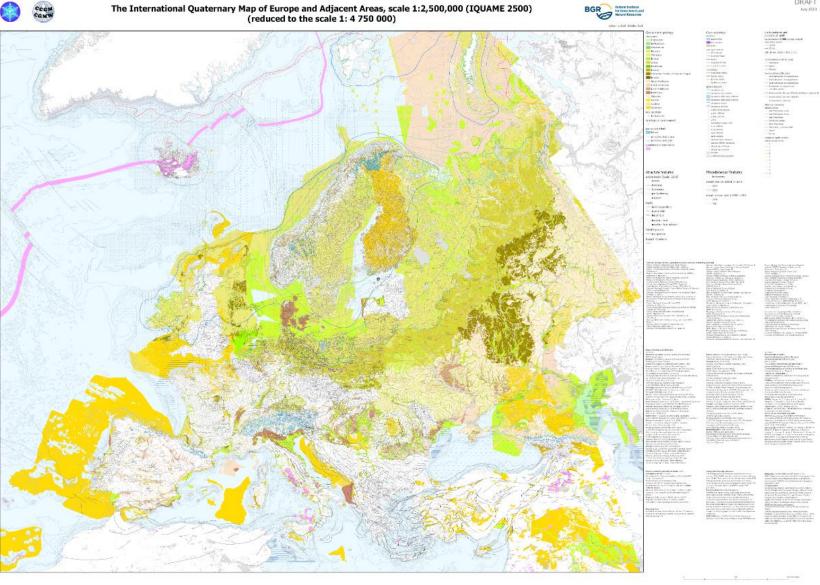
Dave Barell, Margot Böse, Kim Cohen, Jürgen Ehlers, Phil Gibbard, Marco Giardino Thijs van Kolfschoten, M. Meghraoui, Giovanni Monegato, Pierluigi Pieruccini, Christian Schlüchter, Bettina Schulz-Paulsson, Brigitte Urban, Stefan Wansa et. al.

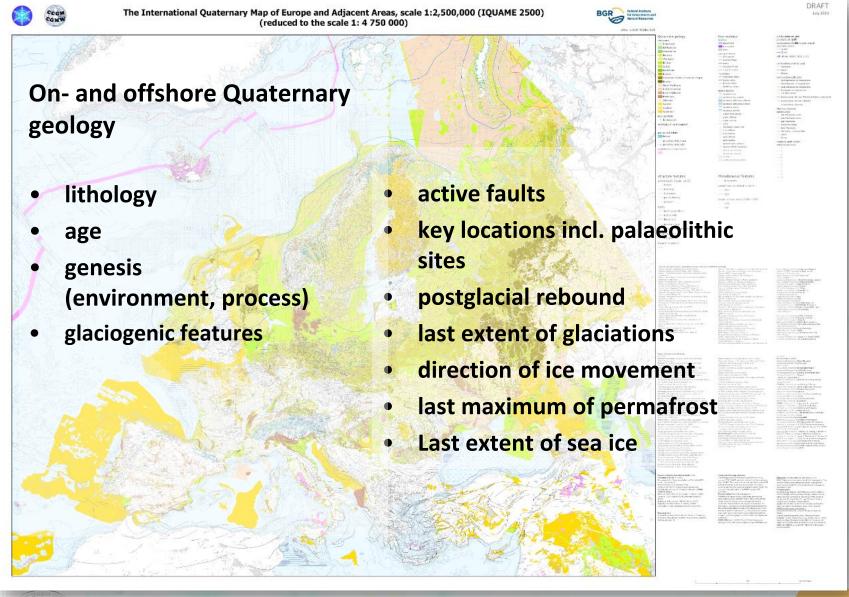
Coordinator and editor-in-chief

Kristine Asch (BGR)

GIS cartography:

Alexander Müller (BGR)





Actual
Status of
the
IQUAME –

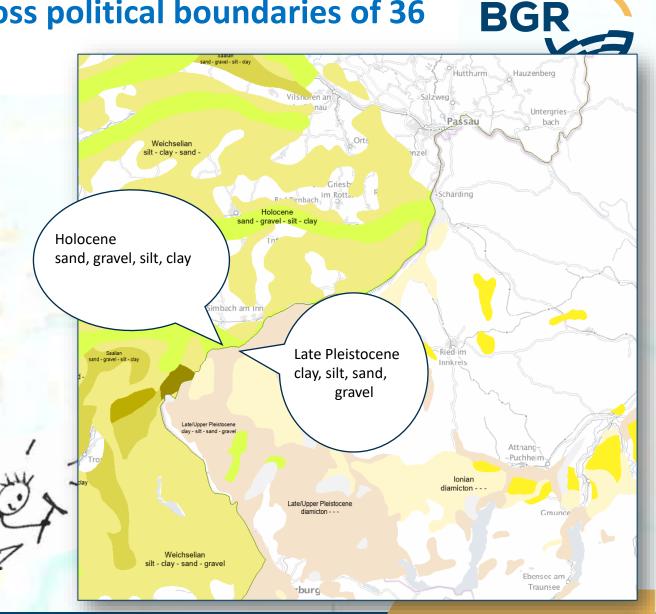
Themes and layers in preparation

Need for harmonisation across political boundaries of 36

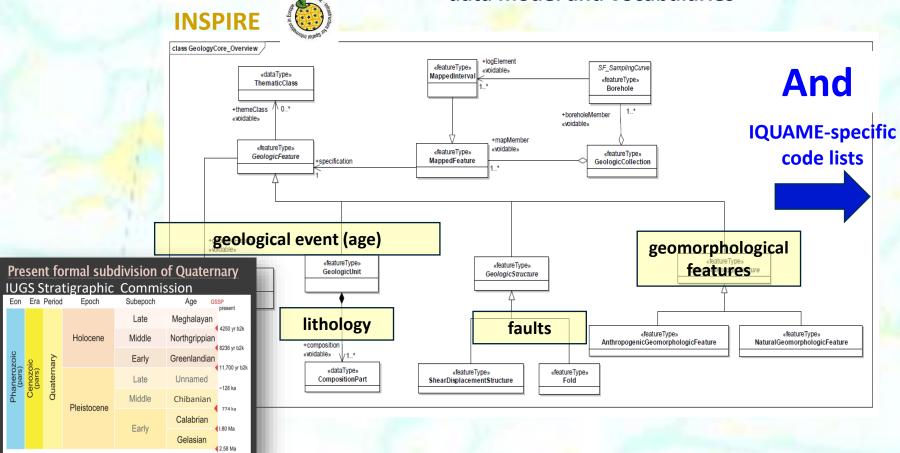
countries:

differing:

- mapping scales
- age of mapping campaign
- mapping methods
- legends and classification systems*
- colours/symbols/portrayal rules


... and the typical geologist's individual fondness for a specific geological feature.

* EC Directive INSPIRE changed some of that.



Need for a common denominator: Project standards

adaptation of European EC INSPIRE Directive Implementation Rules:

data model and vocabularies

Active faults

Glaciogenic features

Maximum extent of glaciation

Direction of ice movement

Maximum limit of permafrost

Post glacial rebound

Key locations, palaeolithic sites

IQUAME 2500: age description of the units: Stratigraphic correlation table

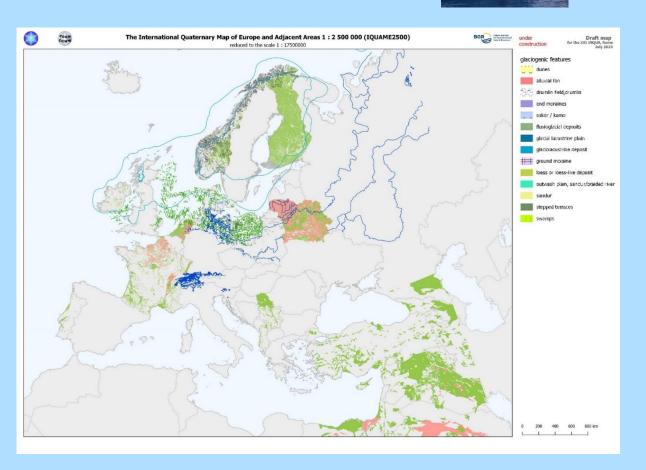
Agreed correlation table for the IQUAME age classification

			Regional Stages	s (as defined d	uring the Vienna	(2012) IQUAN	ΛΕ meeting)	Age	
Cohen, K.M.	ISC age	INSPIRE	Northern	Alps	East	East	British	Older	Younger
& Gibbard, P.	(IUGS;	value	Europe		Europe 1	Europe 2	Stages	Boundary	Boundary
(2011)	2019)								
Quaternary	Quaternary	Quaternary						2.588 Ma	0.0 Ma
Holocene	Holocene	Holocene						0.0117 Ma	0.0 Ma
	Meghalayan (2018)							0.0042 Ma	0.0 Ma
	Northgrippian (2018)							0.0082 Ma	0.0042 Ma
	Greenlandian (2018)							0.0117 Ma	0.0082 Ma
Pleistocene	Pleistocene	Pleistocene						2.588 Ma	0.0117 Ma
Late Pleistocene	Upper Pleistocene	Upper Pleistocene							0.0117 Ma
		Weichselian	Weichselian	Würm	Valdaian		Devensian		
		Eemian	Eemian		Mikulinian		Ipswichian	0.126 Ma	
Middle	Middle	Middle							0.126 Ma
Pleistocene	Pleistocene	Pleistocene							
		Ionian						1	
		Saalian	Saalian	Riss	Moscovian	Dnieper	Wolstonian	1	
		Holsteinian	Holsteinian		Likhvinian		Hoxnian		
		Elsterian	Elsterian	Mindel	Okian	Berezina	Anglian	1	
		"Cromerian	Cromer C		Muchkapian				
		complex"	Cromer B	Günz	Donian			1	
			Cromer A					0.781 Ma	
Early	Calabrian	Lower							0.781 Ma
Pleistocene		Pleistocene	ł						
		Calabrian	C						
		"Cromerian complex"	Cromer A						
		Bavelian	Bavelian					1.806 Ma	
	Gelasian	Gelasian						2.588 Ma	1.806 Ma

IQUAME thematic layer under construction: glaciogenic features

- glacial features

 incl.drumlins, eskers, nunatak fields,
 tunnel valleys, moraine features
- periglacial features


 incl.pingos, cover sands
- glacio-marine features (partly from EMODnet project)

incl. tunnel valleys, glacial scouring marks, ice-rafted debris fields

and

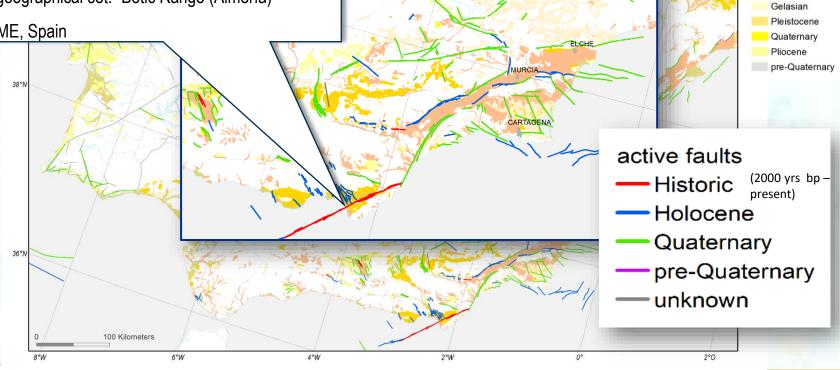
incl. e.g. loess/loess-like deposits, alluvial fans, dunes/dunefields, etc.

IQUAME thematic layer: active faults

(under construction),

age

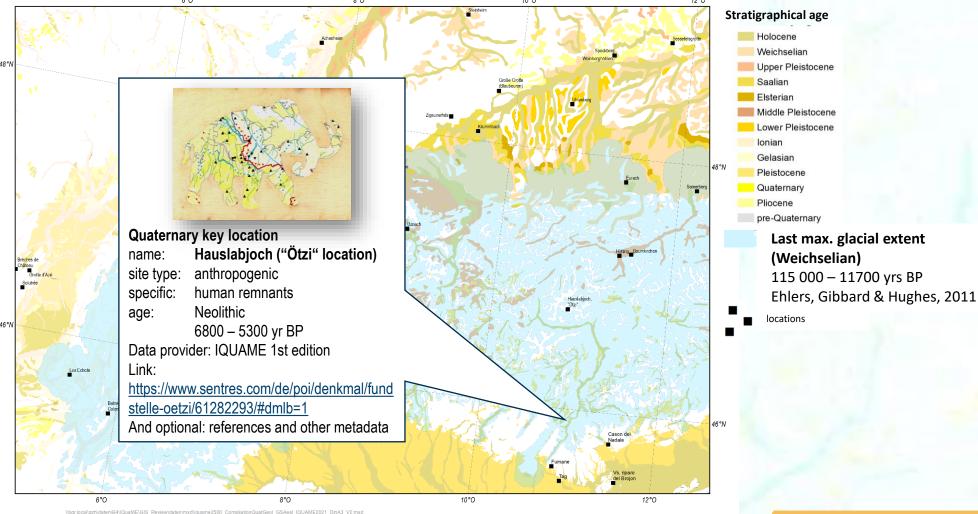
Weichselian


Saalian Elsterian

Upper Pleistocene

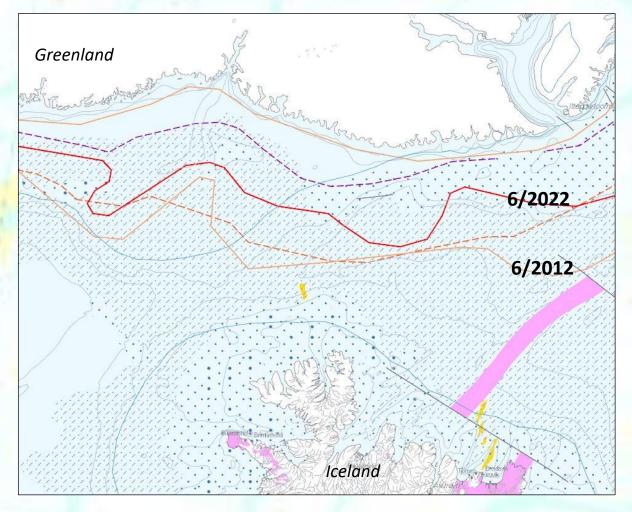
Lower Pleistocene

Example from the Iberian Peninsula



IQUAME Thematic layers: palaeolithic and geological key locations

Example from the Western and Central Alps



Fresh addition: thematic layer of sea ice extent

recent sea ice extent, June

____ 2012

mean sea ice extent 1980 -2010

---- June

---- July

Source Meereisportal, AWI, Bremerhaven, Germany

Technical scheme of data acquisition & processing

preparation

standard vocabulary, guidelines, topographic base

processing

compile, generalise Harmonize, edit and portray

consultation & harmonisation

send material

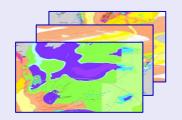
send data

r

national data production


IQUAME participants

use vocabulary provide map data

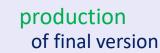


system

ArcGiSPro/ SQLserver

send processed data for review,

review


by participants,
advisory board

<u>www</u>

- acquisition of most recent data from the member countries
- the harmonisation across political boundaries
- transformation of partner data to common standards, i.e. INSPIRE and IQUAME project vocabularies
- Compilation and evaluation of data and information from heterogeneous sources (different authors, format, etc)
- meet and work (and harmonize!) on-line

IQUAME 2500 – numerous sources



Data sources	theme	
national contributions by IQUAME members	 lithology* age (geochronological)* genesis: event environment, event process* glaciogenic features key locations active faults Max. glacial extents * = specified by EC Directive INSPIRE Technical Guidelines 	
regional and cross- boundary datasets from other projects	 EMODnet - Off-shore Quaternary geology / geomorphology LGM datasets (Gibbard/Ehlers, Hughes et al.) BRITICE data: updated LGM UK/Ireland active faults (SHARE project) DATED: LGM Northern Europe, direction of ice movement Postglacial uplift project from SGU, 2014 International Quaternary Map Draft of the Middle East, 2016 IGME 5000 (2005): volcanic rocks, meteoritic impact structures, off-shore features, bathymetry, 	
features from 1st edition (1967 -1995)	 key localities direction of ice movement (version 1995) regional data from unavailable national contributions Off-shore lithology Limits of transgressions, ancient shorelines 	
publications	On new data from trans-boundary, regional and local mapping	

Building the IQUAME: next steps

(continuously: hunting and gathering)

2023

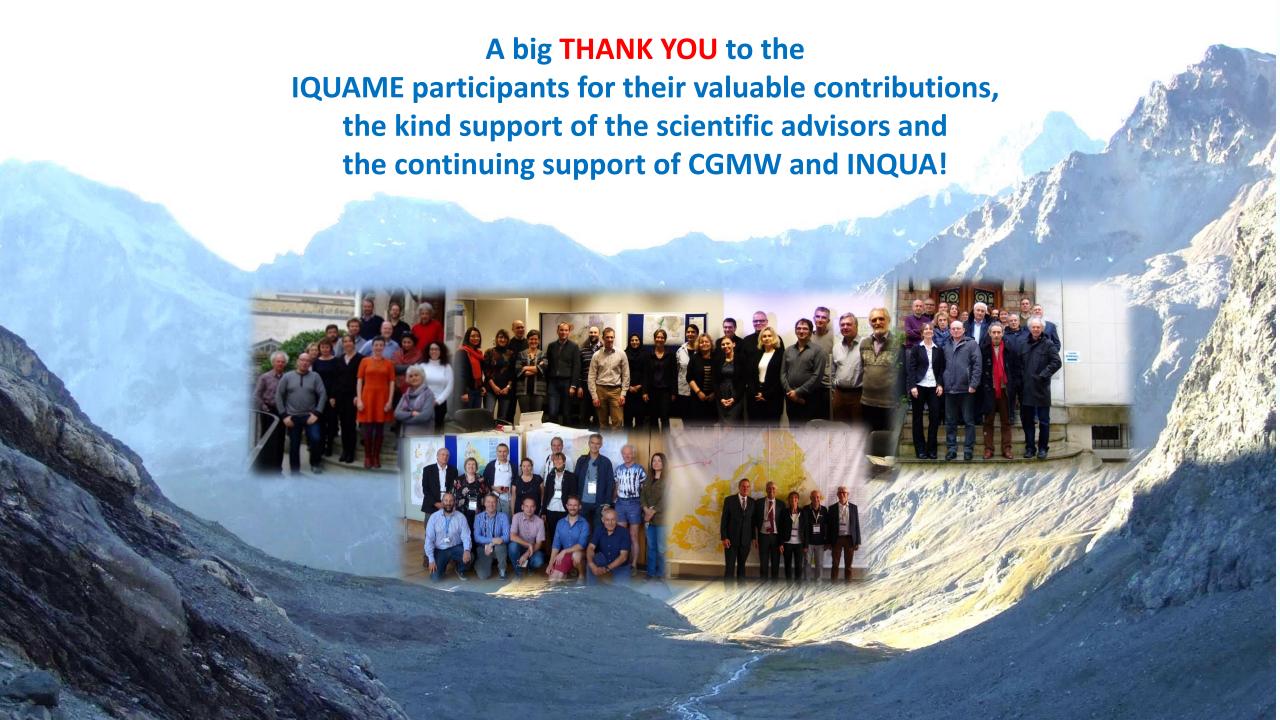
- 4. May: IQUAME on-line Workshop
- XXI INQUA in Rome: Session and presentation, harmonisation and consultation workshop

- spring: review and preparation workshop
- August: Presentation at 37th International Geological Congress (IGC), Busan, South Korea in session: "Mapping the Quaternary geology: from detailed regional mapping campaigns to small-scale compilations"
- on-line availability of first harmonized layer at BGR Geoportal

2025 - 2027

- continuous publication of harmonised layers
- several consultation and editing workshops
- presentation and celebration of final version at INQUA 2027!

The IQUAME 2500 - printed out in original scale for the INQUA 2023 Congress in Rome



The Great Travelers: Voyages to the Unifying Earth

Warm Invitation to the IGC Session "Geoscience information, geological mapping and Modelling"

Conveners:

Kristine Asch & Marco Pantaloni

Foreseen Key Note speakers:

Hans-Georg Krenmayr Manuel Pubellier

Category	Regular Session					
Title	Geoscience information, geological mapping and modelling					
Theme	T22 GIS and Remote Sensing;					
	The last few years have been characterized by rapid progress in techniques of data					
	acquisition, data management, and geologic and geothematic mapping					
	representation. In parallel, there have been a number of attempts at both semantic					
	and cartographic harmonization processes, which are often still being debated.					
	This session aims to present the progress made in these fields, either through the					
Full description	results obtained by the various cartographic harmonization projects whether					
ran acsemperar	worldwide, continental or regional scales (CGMW 5 Million Map, OneGeology, EGDI,					
	EMODnet, CSA-GSEU).					
	A detailed focus will be made on recent developments and projects in the field of					
	geologic mapping and modelling, harmonisation techniques and procedures, pre-					
	and post-processing data and methods for the identification of geological					
	information especially for surface geological and structural information.					

